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Abstract. We use Van Allen Probes (Radiation Belt Storm
Probes A and B, henceforth RBSP-A and RBSP-B) and
GOES-13 and GOES-15 (henceforth G-13 and G-15) mul-
tipoint magnetic field, electric field, plasma, and energetic
particle observations to study the spatial, temporal, and spec-
tral characteristics of compressional Pc5 pulsations observed
during the recovery phase of a strong geomagnetic storm on
1 January 2016. From ∼ 19:00 to 23:02 UT, successive mag-
netospheric compressions enhanced the peak-to-peak ampli-
tudes of Pc5 waves with 4.5–6.0 mHz frequencies from 0–
2 to 10–15 nT at both RBSP-A and RBSP-B, particularly
in the prenoon magnetosphere. Poloidal Pc4 pulsations with
frequencies of ∼ 22–29 mHz were present in the radial Bx
component. The frequencies of these Pc4 pulsations dimin-
ished with increasing radial distance, as expected for res-
onant Alfvén waves standing along field lines. The GOES
spacecraft observed Pc5 pulsations with similar frequencies
to those seen by the RBSP but Pc4 pulsations with lower fre-
quencies.

Both RBSP-A and RBSP-B observed frequency doubling
in the compressional component of the magnetic field dur-
ing the Pc5 waves, indicating a meridional sloshing of the
equatorial node over a combined range in ZSM from 0.25

to −0.08 Re, suggesting that the amplitude of this merid-
ional oscillation was ∼ 0.16 Re about an equatorial node
whose mean position was near ZSM =∼ 0.08 Re. RBSP-A
and RBSP-B HOPE (Helium Oxygen Proton Electron) and
MagEIS (Magnetic Electron Ion Spectrometer) observations
provide the first evidence for a corresponding frequency dou-
bling in the plasma density and the flux of energetic elec-
trons, respectively. Energetic electron fluxes oscillated out of
phase with the magnetic field strength with no phase shift at
any energy. In the absence of any significant solar wind trig-
ger or phase shift with energy, we interpret the compressional
Pc5 pulsations in terms of the mirror-mode instability.

1 Introduction

Ultralow frequency (ULF) pulsations – with periods of 100 s
or greater, with high azimuthal wave numbers (m), with mag-
netic field perturbations in the radial direction, and with elec-
tric field perturbations in the azimuthal direction – within the
Earth’s magnetosphere are typically poloidal waves (Sugiura
and Wilson, 1964). According to Elkington et al. (2003), en-
ergetic particles with drift frequencies of 6.7–22 and 1.7–
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6.7 mHz can readily interact with corresponding high-m
poloidal Pc4 and Pc5 pulsations. Because the atmosphere and
ionosphere screen these high-m waves from the ground, they
can only be studied with the help of satellite observations.
Past studies of Pc4 and Pc5 pulsations with significant com-
pressional components employed observations from loca-
tions at or near geosynchronous orbit (e.g., Dai et al., 2013).
Higbie et al. (1982) and Nagano and Araki (1983) showed
that long-lasting compressional Pc5 pulsations occur most
frequently in the dayside magnetosphere during the recov-
ery phase of magnetic storms. Storm-time Pc5 pulsations oc-
cur in the afternoon sector between 12:00 and 18:00 LT (local
time) following injections of ring current particles (Kokubun,
1985).

A number of studies have examined compressional Pc5
waves outside geostationary orbit. According to these stud-
ies, compressional Pc5 waves were observed in the dawn
(Hedgecock, 1976), dusk (Constantinescu et al., 2009), and
noon (Takahashi et al., 1985) sectors. Zhu and Kivelson
(1991) reported that intense compressional waves are a per-
sistent feature on both flanks of the magnetosphere. Com-
pressional Pc5 pulsations occur within ∼ 20◦ latitude of the
magnetic equator (Vaivads et al., 2001). They have wave-
lengths of several radii (Walker et al., 1982) and often ex-
hibit harmonics. Elkington et al. (2003) noted that poloidal
and compressional modes are far more effective for the ra-
dial transport of energetic particles than the toroidal mode.
Two methods are used to identify the harmonic mode of a
poloidal oscillation. The first compares the phase difference
between the radial component of the magnetic field and the
azimuthal component of the electric field (Takahashi et al.,
2011). The second compares observed wave frequencies with
the eigenfrequencies predicted by theory (Cummings, 1969).
The multisatellite study of Takahashi et al. (1987a) showed
that a compressional Pc5 wave had an antisymmetric stand-
ing structure.

Compressional Pc5 pulsations have been ascribed to nu-
merous excitation mechanisms. They can be produced by in-
ternal and external processes. It is supposed that the solar
wind is the main external source for pulsations produced by
the Kelvin–Helmholtz (KH) instability at the magnetopause
or the inner edge of the low-latitude boundary layer (e.g.,
Guo et al., 2010). Observations indicating enhanced rates of
Pc5 occurrence during periods of greater solar wind veloc-
ity support this model (e.g., Engebretson et al., 1998). Tran-
sient variations in the dynamic pressure of the solar wind or
foreshock (e.g., Wang et al., 2018; Shen et al., 2018) that
cause abrupt changes in the magnetic field strength in the
magnetosphere and sudden impulses in the ionosphere (e.g.,
Zhang et al., 2010; Sarris et al., 2010) provide another possi-
ble trigger for Pc5 pulsations. External pressure impulses can
cause compressional oscillations of the magnetosphere with
discrete eigenfrequencies, known as global modes or cav-
ity/waveguide modes (Samson et al., 1992). Periodic solar
wind dynamic pressure variations directly drive some com-

pressional magnetospheric magnetic field oscillations (e.g.,
Kepko and Spence, 2003; Motoba et al., 2003). Takahashi
and Ukhorskiy (2008) considered solar wind pressure varia-
tions as the main external driver of Pc5 pulsations observed
at geosynchronous orbit in the dayside magnetosphere.

Internal generation mechanisms for compressional Pc5
pulsations include the drift-bounce resonant instability which
occurs for particles with resonance drift and bounce periods
(Southwood et al., 1969) and the drift-mirror instability in
the presence of strong temperature anisotropies (Chen and
Hasegawa, 1991). In high β plasmas (β is the plasma pres-
sure divided by the magnetic pressure), these mechanisms
favor antisymmetric waves (Cheng and Lin, 1987).

One possible generation mechanism for compressional
Pc5 pulsations at geosynchronous orbit is a drift-mirror insta-
bility of ring current particles (e.g., Lanzerotti et al., 1969).
While the observed anticorrelated magnetic field strength
and ion flux oscillations are expected for a drift-mirror wave
(Kremser et al., 1981), the instability criterion is generally
not satisfied (Pokhotelov et al., 1986). One possible reason
for the lack of consistency between theory and observation
might be because the real geometry of the magnetosphere
is not taken into account (Cheng and Lin, 1987). Compres-
sional pulsations are often accompanied by pulsations in par-
ticle fluxes (Kremser et al., 1981; Liu at al., 2016). Particle
observations can provide useful information on the spatial
and wave structure of ULF pulsations. Lin et al. (1976) ex-
plained flux oscillations as the adiabatic motion of particles
in a magnetohydrodynamic wave. Kivelson and Southwood
(1985) studied charged particle behavior in compressional
ULF waves and showed that “a mirror effect” is the dominant
cause for particle flux modulations. Finite gyroradius effects
enable detection of gradients in particle flux associated with
waves (e.g., Korotova et al., 2013).

We use multipoint magnetic field, plasma, and energetic
particle observations from RBSP-A and RBSP-B (Radiation
Belt Storm Probes) and G-13 and G-15 (GOES) to study
the spatial, temporal, and spectral characteristics of com-
pressional Pc5 pulsations observed deep within the mag-
netosphere during the recovery phase of the strong mag-
netic storm which began on 31 December 2015. We in-
vestigate the type of pulsation (compressional versus trans-
verse), their harmonic mode, and their latitudinal nodal struc-
ture. We focus on the properties of double-frequency pulsa-
tions that occurred in the vicinity of the geomagnetic equa-
tor. We demonstrate that the energetic particles respond di-
rectly to the compressional Pc5 pulsations and also exhibit
a double-frequency oscillation. We search for possible solar
wind triggers and test two possible generation mechanisms:
drift-bounce resonance and mirror instability. The paper is
organized as follows. Section 2 describes the instruments and
resources. Section 3 presents the solar wind and interplane-
tary magnetic field (IMF) conditions. Section 4 provides an
analysis of these waves and their generation mechanisms.

Ann. Geophys., 38, 1267–1281, 2020 https://doi.org/10.5194/angeo-38-1267-2020



G. Korotova et al.: Multipoint observations of compressional Pc5 pulsations 1269

2 Resources

The Van Allen Probes mission can be used to study the
geospace response to a fluctuating solar wind. The mis-
sion began in August 2012 with a twin spacecraft launch
into similar 10◦ inclination orbits with perigee altitudes
slightly greater than 600 km and apogee altitudes just be-
yond 30 000 km (Mauk et al., 2012). The spacecraft carry in-
struments that measure electromagnetic fields, ultralow fre-
quency waves, and charged particle populations deep within
the magnetosphere. This paper employs observations of the
most abundant ion components as well as electrons, over the
0.001–50 keV energy range, of the core plasma populations
from the HOPE instrument; populations of 20–4000 keV ions
and electrons from the MagEIS instrument (Blake et al.,
2013) in the Energetic Particle, Composition, and Thermal
Plasma (ECT) suite (Spence et al., 2013); and fluxes of ions
over the energy range from ∼ 20 to ∼ 1 MeV and electrons
over the energy range from ∼ 25 to ∼ 1 MeV (RBSPICE,
Radiation Belt Storm Probes Ion Composition Experiment)
(Mitchell et al., 2013) in conjunction with observations from
the magnetometer in the Electric and Magnetic Field Instru-
ment Suite and Integrated Science (EMFISIS) suite (Kletzing
et al., 2013) and the Electric Field and Waves (EFW) instru-
ment (Wygant et al., 2013). We examine electric and mag-
netic field measurements with 11 and 4 s time resolutions,
respectively, and differential particle flux observations with
∼ 11 s (spin period) time resolution. The data are provided by
NASA GSFC’s CDAWeb (Coordinated Data Analysis Web)
in the MGSE (modified GSE, with GSE meaning geocen-
tric solar ecliptic) coordinate system. We use magnetic field
data from G-13 and G-15 with 0.5 s time resolution (Singer et
al., 1996). Finally, we employ Wind (spacecraft) solar wind
magnetic field and 3DP plasma data with 3 s time resolution
(Lepping et al., 1995; Lin et al., 1995).

3 Orbits, solar wind, and geomagnetic conditions

Figure 1 presents the Bz component of the interplanetary
magnetic field observed at Wind, and geomagnetic activ-
ity indices (Dst and AE) obtained from the OMNI database
(upper panels; (http://omniweb.gsfc.nasa.gov, last access:
30 April 2020), from 12:00 UT on 30 December to 00:00 UT
on 2 January 2016. The bottom panels show Wind obser-
vations of the magnetic field components, total magnetic
field strength, cone angle, pressure, plasma density, and ve-
locity from 16:00 UT on 1 January 2016 to 00:00 UT on
2 January 2016 during which time the spacecraft moved
from GSM (X, Y, Z)= (194.7, 20.1, −12.5) Re to (194.8,
23.6, −7.4) Re (where GSM represents the geocentric so-
lar magnetospheric system and Re represents Earth radius).
The pulsation events to be studied here occurred late on
1 January 2016, following a prolonged period of strongly
southward IMF orientation and geomagnetic activity. A sub-

Figure 1. Bz component of the magnetic field observed at Wind
and geomagnetic activity indices (Dst and AE) obtained from the
OMNI database (upper panels) from 12:00 UT on 30 December
to 00:00 UT 2 January 2016. The bottom panels show Wind ob-
servations of the magnetic field components, total magnetic field
strength, cone angle, pressure, plasma density, and velocity from
16:00 UT on 1 January 2016 to 00:00 UT on 2 January 2016. Shad-
ing highlights intervals when magnetospheric spacecraft observed
Pc5 compressional pulsations.

stantial increase in the solar wind dynamic pressure early
on 31 December was followed by a strong southward IMF
that persisted from 19:00 UT on 31 December 2015 until
09:00 UT on 1 January 2016. A strong electrojet with AE in-
dex greater than 2100 nT at 12:36 UT on 31 December 2015
was followed by two moderate substorms that enhanced AE
at ∼ 14:00 and 18:45 UT on 1 January 2016. The Dst in-
dex responded by reaching a value as low as −110 nT at
00:30 UT on 1 January 2016. Shading highlights the inter-
val from ∼ 19:00 to 23:02 UT late in the recovery phase and
late in the day on 1 January 2016 when the Van Allen Probes
and GOES spacecraft observed the strong compressional Pc5
pulsations of interest to this study.

The latter interval (bottom panels) was marked by strong
variations in the solar wind dynamic pressure. Shading marks

https://doi.org/10.5194/angeo-38-1267-2020 Ann. Geophys., 38, 1267–1281, 2020

http://omniweb.gsfc.nasa.gov


1270 G. Korotova et al.: Multipoint observations of compressional Pc5 pulsations

Figure 2. Trajectories of RBSP-A (red), RBSP-B (blue), G-13
(black), and G-15 (purple) from 15:00 to 24:00 UT on 1 Jan-
uary 2016 in the X–Y and X–Z GSM planes. Open circles mark the
beginning of the spacecraft trajectories which are duskward for the
GOES spacecraft and duskward at apogee for the Van Allen Probes.
The thick line segments indicate the locations of the spacecraft at
the times when compressional Pc5 magnetic field pulsations oc-
curred. Dots mark their locations where weak pulsations (A< 5 nT)
occurred.

an interval of depressed magnetic field strengths and gen-
erally anticorrelated enhanced densities, velocities, and so-
lar wind dynamic pressures. The cone angle, θ , defined as
the angle between the IMF and the Sun–Earth line was less
than 45◦ during this interval. The magnetic field was briefly
aligned with the Sun–Earth line (Bx) at the center of the inter-
val from 20:00–21:00 UT. For most of the ∼ 4 h long shaded
interval, IMF Bx (By) was predominantly positive (nega-
tive) and the Bz component remained almost constant near
0 nT, indicating a spiral and equatorial IMF configuration.
The total magnetic field strength decreased from 7.9 nT at
18:00 UT to 2.2 nT at 19:48 UT, and the solar wind velocity
and dynamic pressure increased from 426 km/s and 0.62 nPa
at 18:00 UT to 457 km/s and to 3.37 nPa at 20:47 UT, respec-
tively. At ∼ 22:20 UT almost all parameters returned to their
initial undisturbed values.

Figure 2 presents RBSP-A, RBSP-B, G-13 (MLT is
∼UT−5, where MLT represents magnetic local time), and
G-15 (MLT is ∼UT−9) trajectories from 15:00 to 24:00 UT
on 1 January 2016 in the X–Y and X–Z GSM planes. Open
circles mark the beginning of the spacecraft trajectories
which are duskward for the GOES spacecraft and duskward
at apogee for the Van Allen Probes. All of the spacecraft were
north of the equator when in the dayside magnetosphere. The
thick line segments (dots) indicate the locations of the space-
craft at the times when (weak) Pc5 magnetic field pulsations
occurred.

Figure 3 compares lagged Wind solar wind dynamic pres-
sure variations with G-13 and G-15 observations of the day-
side magnetospheric magnetic field. The arrows connect en-
hancements of the solar wind dynamic pressure to corre-
sponding compressions of the magnetosphere. To determine
the lag time between the Wind and GOES-15 observations,
we related individual magnetosphere compressions to corre-

sponding dynamic pressure variations. Additionally, we con-
firmed these empirically derived lag times with simple bal-
listic estimates based on the solar wind velocity and the dis-
tance of Wind from Earth. It is relatively easy to associate
the GOES magnetic field enhancements with corresponding
features in the solar wind dynamic pressure at the begin-
ning and the end of the interval but less easy from 19:50
to 21:20 UT corresponding to ∼ 20:45 and 22:15 UT at the
GOES spacecraft. The lag time from Wind to the Earth is not
uniform and depends on IMF orientation. At the beginning
and end of the interval, when the IMF was spiral (Bx> 0,
By< 0), the lag was in the range of ∼ 46 to 58 min. Consis-
tent with expectations, the lag became greater for the interval
from ∼ 19:50 to 21:20 UT when the IMF was nearly radial
(By and Bz ∼ 0 nT). The reasonable correspondence of the
magnetosphere compressions to solar wind dynamic pressure
variations demonstrates that Wind was a good monitor for
solar wind conditions and that a series of pressure enhance-
ments were applied to the magnetosphere during the interval
of interest. Pc5 pulsation amplitudes at G-13 and G-15 were
greater during the interval of enhanced solar wind dynamic
pressure and magnetospheric magnetic field strengths than
they were at earlier and later times.

4 Pulsation observations

4.1 Spatial characteristics of Pc5 pulsations

Consider the spatial, temporal, and spectral characteristics of
the compressional Pc5 pulsations. Figure 4a shows G-13 and
G-15 observations of the total magnetic field strength from
18:00 to 24:00 UT. The spacecraft observed long-duration
Pc5 pulsations over a wide longitudinal region in the pre- and
postnoon magnetosphere from 10:00 to 15:20 MLT (Fig. 2).
G-15 observed weak, less than ∼ 5 nT amplitude, Pc5 waves
from 18:28 to 19:04 UT prior to the main event. During the
main event from 19:04 to 23:00 UT, the magnetosphere was
compressed (Fig. 3), magnetic field strengths increased, and
the amplitude of these waves increased to values ranging
from 10 to 16 nT with peak amplitudes prior to local noon.
G-13 observed weak Pc5 pulsations with amplitudes of 2–
4 nT throughout most of the time interval from 16:40 UT
(not shown) to 21:00 UT. During the interval from 19:34 UT
(∼ 14:45 MLT) to 20:10 UT (∼ 15:20 MLT), the pulsations
reached slightly stronger amplitudes of 5–8 nT. At 23:02 UT
all Pc5 wave activity at both GOES stopped.

Figure 4b shows the RBSP-A and RBSP-B total magnetic
field strength from 18:40 to 21:10 UT and from 20:40 to
23:10 UT, respectively, on 1 January 2016. Taken together,
RBSP-A and RBSP-B observed Pc5 pulsations that occu-
pied the inner dayside magnetosphere from 5.26 to 5.75 Re
and from 09:56 to 12:44 MLT (Fig. 2). Prior to the arrival
of the strong solar wind dynamic pressure variations from
18:15 to 18:55 UT, RBSP-A observed very weak pulsations
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Figure 3. Observations of the solar wind dynamic pressure at Wind (time shifted) and the total magnetic field strength at G-13 and G-15
from 18:00 to 24:00 UT. The arrows connect enhancements of the solar wind dynamic pressure to corresponding compressions of the
magnetosphere.

Figure 4. (a, b) G-15 and G-13 (a) total magnetic field strength from 18:00 to 24:00 UT on 1 January 2016. RBSP-A and RBSP-B (b) total
magnetic field strength from 18:40 to 21:10 UT and from 20:40 to 23:10 UT on 1 January 2016, respectively, Beneath the panels are listed
the universal time (UT) and magnetic local time (MLT).

with Pc5 periods and amplitudes of 1–3 nT (not visible at this
scale). After the compression of the magnetosphere just after
19:00 UT, the pulsation amplitude at RBSP-A increased to
values ranging from 10 to 15 nT with the peak amplitude oc-
curring prior to local noon (Fig. 4b). RBSP-B observed sim-
ilar compressional Pc5 pulsations from 20:46 UT that ceased

simultaneously with the end of the magnetospheric compres-
sion at about 23:02 UT.

To determine the type of the Pc5 waves, we converted the
magnetic field observations from GSE into the field-aligned
coordinate system (FAC). Here the Z axis lies parallel to the
locally averaged magnetic field. The Y axis points approx-
imately azimuthally eastward and is transverse to B and to

https://doi.org/10.5194/angeo-38-1267-2020 Ann. Geophys., 38, 1267–1281, 2020
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Figure 5. RBSP-A and RBSP-B magnetic field observations in
field-aligned coordinates from 18:40 to 21:10 UT and from 20:40
to 23:10 UT on 1 January 2016, respectively.

the outward radius vector. The X axis completes the right-
handed system and is directed approximately radially out-
ward from Earth. Figure 5 presents RBSP-A and RBSP-B
magnetic field observations in FAC. The Bz component is the
value of the total magnetic field after subtraction of a 16 min
sliding average. The Pc5 pulsations are observed in all three
components, but the amplitudes of the azimuthal By and ra-
dial Bx components are rather small and do not exceed 7 nT.
The compressional Bz component is much more pronounced
for both spacecraft, reaching amplitudes of 14–15 nT before
local noon. Consequently, the pulsations are primarily com-
pressional. The Bz component oscillated out of phase with
the Bx component at RBSP-A and in phase at RBSP-B and
in quadrature with the By component. Simultaneous RBSP-
A and RBSP-B electric and magnetic field measurements
provide an opportunity to study the mode of the Pc5 waves.
Determining the harmonic mode of the Pc5 waves requires
us to consider the phase of the azimuthal component of the
electric field, Ey, with respect to the radial component of
the magnetic field Bx as a function of latitude (Takahashi
et al., 2011). Figure 6 shows that the phase of the Ey com-
ponent leads that of the Bx component by 90◦ at RBSP-A
from 19:10 to 20:00 UT; therefore, the Pc5 waves are second
harmonic in nature.

4.2 Spectral characteristics

We calculated dynamic spectra for the magnetic field pulsa-
tions. Figure 7 presents the radial, azimuthal, and compres-
sional components of the dynamic spectra of the magnetic
field at RBSP-A and RBSP-B from 18:00 to 21:10 UT and
from 20:00 to 23:10 UT on 1 January 2016, respectively. The
color bar on the right shows the scale for power for frequen-

Figure 6. The phase difference between the RBSP-A azimuthal
component of the electric field (red curve is boxcar smoothed) and
the radial component of the magnetic field Bx in field-aligned coor-
dinates (dashed curve) from 19:10 to 20:00 UT on 1 January 2016.
The amplitude of Ey was multiplied by a factor of 3 to better display
the visual effects.

cies ranging from 0 to 41 mHz in each component. The mag-
netic field exhibited several wideband enhancements at fre-
quencies ranging from 4 to 29 mHz. As expected for com-
pressional Pc5 pulsations, both GOES spacecraft observed
the strongest power densities in the Bz component at domi-
nant frequencies of ∼ 4.5–6 mHz. Red arrows in the Bz pan-
els of Fig. 7 for RBSP-A and RBSP-B indicate the double-
frequency pulsations at ∼ 5.5 and ∼ 11 mHz. We calculated
Fourier spectra for the three components of the RBSP-A and
RBSP-B magnetic field in 600 s sliding-average mean FAC
for each 30 min interval during the event. Figure 8 presents
examples of Fourier spectra calculated for the RBSP-A and
RBSP-B magnetic field from 19:30 to 20:00 UT and from
22:30 to 23:00 UT, respectively, on 1 January 2016. The red
arrows show the dominant frequencies at 5.5 and 5 mHz ob-
served at the two spacecraft, corresponding to periods of
170–200 s. RBSP-A and RBSP-B were situated 3 h in local
time apart; the similar frequencies indicate that conditions in
the dayside magnetosphere remained steady for a long time
and over a broad region.

In passing, we note the presence of Pc4 pulsations. Return-
ing to Fig. 7, we see enhanced power densities at frequen-
cies of ∼ 22–29 mHz with dominant frequencies from 23 to
27 mHz primarily in the radial Bx component. These can be
ascribed to poloidal Pc4 produced simultaneously with the
Pc5 but likely with another energy source. The frequencies
of the Pc4 pulsations decrease with increasing radial dis-
tance, as expected for resonant standing Alfvén waves (Sug-
iura and Wilson, 1964). Pulsation periods depend upon the
magnetic field line length, the magnetic field magnitude, and
the ion density. Shorter field line lengths and enhanced mag-
netic field strengths closer to Earth decrease pulsation peri-
ods. Blue arrows in Fig. 8 indicate Pc4 pulsations at ∼ 25–
27 mHz.

Figure 9 presents dynamic spectra for the G-13 and G-15
magnetic field in FAC from 18:00 to 24:00 UT on 1 Jan-
uary 2016. Spectral power was calculated for frequencies
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Figure 7. Three-component dynamic spectra of magnetic field data at RBSP-A and RBSP-B from 18:00 to 21:10 UT and from 20:00 to
23:10 UT on 1 January 2016, respectively. Beneath the panels are listed the universal time (UT), magnetic local time (MLT), radius (Re), and
Z (SM) in Earth radii.

from 0 to 48 mHz. Like the RBSP-A and RBSP-B magnetic
field spectra, there are two broad frequency band enhance-
ments corresponding to Pc4 and Pc5 frequencies. The dom-
inant frequencies for the compressional Pc5 pulsations oc-
cur from 4.5 to 6.5 mHz. These frequencies are similar to
those observed by Van Allen Probes, and we suppose that
they were generated by the same sources. The Pc4 pulsa-
tions are most pronounced in the radial Bx component and
display strongest spectral power densities in the frequency
range from 13 to 21 mHz. These frequencies are lower than
those observed by Van Allen Probes, since the GOES space-
craft were located further radially outward from Earth (Sug-
iura and Wilson, 1964). The frequencies of the long-lasting
Pc4 pulsations observed by G-15 depended on local time.
They decreased from 20–22 mHz in the prenoon magneto-
sphere to 14–17 mHz near local noon, perhaps in response to
differing conditions (e.g., densities). Takahashi at el. (1984)
noted that an increase in plasma mass density from morn-
ing to afternoon is typical at geosynchronous orbit. Since the
frequencies of the Pc4 pulsations depended on local time and
radial distance from Earth, their sources must be more local-
ized than those for the Pc5 pulsations.

4.3 Particle signatures

Energetic particle observations provide further information
concerning this event. We inspected RBSP-A and RBSP-B
MagEIS observations of energetic particles from 18:30 to
21:00 UT and from 20:40 to 23:10 UT on 1 January 2016,
respectively, and found that the intensities of electrons with
energies from tens of kiloelectron volts to 2 MeV oscillated

Figure 8. Fourier spectra calculated for the radial, azimuthal, and
compressional components of the RBSP-A and RBSP-B magnetic
field in 5 min sliding-average mean field-aligned coordinates from
19:30 to 20:00 UT and from 22:30 to 23:00 UT on 1 January 2016,
respectively.

with Pc5 periods corresponding to those of the magnetic
field. Figure 10a and b show an example of RBSP-A ob-
servations of electron fluxes (a) in the energy range of from
31.5 to 1704 keV from 18:30 to 21:00 UT and (b) their ex-
panded view for selected energies from 19:20 to 20:00 UT.
The energetic electron fluxes oscillated out of phase with the
compressional Bz component of Pc5 magnetic field pulsa-
tions and did not display any phase differences across all en-
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1274 G. Korotova et al.: Multipoint observations of compressional Pc5 pulsations

ergies. The depth of modulation (the peak to valley ratio) is
greater for higher-energy electrons, consistent with the re-
sults by Liu et al. (2016), who interpreted similar observa-
tions in terms of mirror-mode waves. The lower-energy elec-
tron fluxes displayed more noticeable enhancements as a re-
sponse to the compressions of the magnetosphere. Kivelson
and Southwood (1985) noted that the maintenance of pres-
sure balance in low-frequency compressional waves usually
requires the presence of some pitch angle anisotropy, and
the antiphase relation between the plasma and magnetic field
pressures suggests that particle pitch angle distributions peak
near 90◦. Figure 11 presents RBSP-A and RBSP-B obser-
vations of pitch angle distributions for electrons with ener-
gies from 54 to 1060 keV from 18:30 to 21:00 UT and from
20:40 to 23:10 UT on 1 January 2016, respectively. The fig-
ure confirms that pitch angle distributions peak near 90◦. Fur-
thermore, it shows that the electron intensities display quasi-
periodic enhancements at all energies with the strongest at
pitch angles near 90◦.

4.4 Double-frequency pulsations

When RBSP-A and RBSP-B were in the vicinity of the ge-
omagnetic equator, the compressional Pc5 pulsations dis-
played peculiar features indicating frequency doubling. The
compressional components oscillated with a frequency twice
that of the transverse component. Coleman (1970) was the
first to report observations of such events in the geosyn-
chronous magnetic field. Higuchi et al. (1986) called them
harmonic structures when the first and second harmonics ex-
hibited similar amplitudes and transitional structures when
the amplitudes of the alternating peak were different. Taka-
hashi (1987b) interpreted double-frequency oscillations in
terms of a model invoking the second-harmonic structure
of an antisymmetric standing wave in which the location of
the equatorial node of field-aligned displacement oscillates
in phase with the wave. Cheng and Qian (1994) presented
a model for the magnetic field perturbations during the pul-
sations reported by Takahashi et al. (1987a, 1990). Figure 6
in the paper of Korotova et al. (2013) illustrates how low-
latitude spacecraft can observe two magnetic field strength
enhancements per wave cycle when the equatorial node oscil-
lates latitudinally up and down in phase with an antisymmet-
ric compressional wave. Right at the equator the spacecraft
observes identical amplitudes for the two compressions. At
any other latitude the two compressions at the spacecraft will
have different magnitudes and the imbalance between them
increases when the spacecraft moves farther from the equa-
tor. Takahashi et al. (1987b) showed that a latitudinal shift of
a fraction of a degree can turn a harmonic Bz structure into a
nonharmonic structure. Spacecraft located far from the mag-
netic equator do not observe frequency doubling but just a
single enhancement. Korotova et al. (2013) derived the lati-
tudinal structure of the waves by invoking north–south slosh-
ing of the low-latitude node.

Figure 12a and b present (a) RBSP-A and RBSP-B
observations of double-frequency magnetic pulsations and
(b) their locations in the X–Y GSM and X–Z SM planes.
Dashed lines in Fig. 12a indicate intervals when the double-
frequency pulsations in Bz are most prominent: 20:45 to
20:54 UT at RBSP-A and 21:03 to 21:31 UT at RBSP-B
in these line plots. However, the amplitudes of the second
harmonic are generally much lower than those of the first
harmonic. At these times, e.g., from 20:05 to 20:45 UT at
RBSP-A and from 21:35 to 21:55 UT at RBSP-B, the second-
harmonic compressions in Bz are barely perceptible in these
line plots. Model predictions for the magnetic field pertur-
bations associated with an equatorial node whose latitude
oscillates in phase with an antisymmetric poloidal wave in-
dicate that the ratio of the amplitudes of the first-to-second
harmonic compressions should change with latitude, being
∼ 1 at the average position of the low-latitude node and
∼ 0 at and beyond the maximum latitude to which the os-
cillating node can reach (Takahashi et al., 1987b). To de-
termine the meridional motion of the magnetic field node,
we measured amplitudes of the first and second harmonics
of the compressional pulsations. We found that RBSP-A ob-
served ratios near 1 at ZSM =∼ 0.08 Re, while RBSP-B ob-
served ratios near 1 at ZSM =∼ 0.10 Re. These are the loca-
tions where the southward-moving spacecraft pass through
the mean positions of the equatorial node. Figure 12a shows
that RBSP-A observed second harmonics from ZSM = 0.25
to 0.04 Re, while RBSP-B observed them from ZSM = 0.19
to −0.08 Re. Consequently, we believe that the equatorial
node oscillated with an amplitude of at least 0.15 to 0.18 Re.
Note, however, that the ratio of the first-to-second harmon-
ics does not show a smooth transition as the spacecraft move
equatorward. Either the amplitude of the compressional pul-
sation or the meridional oscillation in the equatorial node var-
ied in time, probably abruptly.

Figure 10a and b show that the compressional pulsations
modulated energetic electrons observed by RBSP-A, and we
should therefore expect to find the signatures of the double-
frequency pulsations not only in the magnetic field but also
in the fluxes of particles. Takahashi et al. (1990) reported
AMPTE/CCE (Charge Composition Explorer) observations
of compressional Pc5 pulsations that exhibited harmonically
related transverse and compressional magnetic oscillations
that modulated the flux of medium-energy protons (E >
10 keV) with double frequency but did not discuss the event
in detail. We report the first evidence for meridional sloshing
of the equatorial node in the simultaneous compressional Pc5
pulsations and variations of electron fluxes and electron den-
sities observed by MagEIS and Hope, respectively. Figure 13
presents RBSP-A (left panel) and RBSP-B (right panel) elec-
tron fluxes for energies at 31.9 and 54.8 keV, electron densi-
ties, and the Bz component of the magnetic field in FAC from
19:00 to 21:00 UT and at RBSP-B from 20:46 to 22:10 UT.
The panels in the bottom of Fig. 13 present expanded views
of 20 min intervals with the double-frequency pulsations.
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Figure 9. Three components of dynamic spectra of the magnetic field data at G-15 and G-13 from 18:00 to 24:00 UT on 1 January 2016.
Beneath the panels are listed the universal time (UT), magnetic local time (MLT in SM), L, and Z (SM) in Earth radii.

Figure 10. (a, b) RBSP-A observations of electron fluxes (a) in the energy range from 31.5 to 1704 keV from 18:30 to 21:00 UT and (b) their
expanded view for selected energies from 19:20 to 20:00 UT.

The Bz component of the magnetic field varies with double
frequencies out of phase with the fluxes of electrons and den-
sities. This study gives better insight into the nodal structure
of the waves and helps to clarify their source.

4.5 Testing Pc4-5 pulsation generation mechanisms

We tested several causes for the Pc4-5 pulsations, including
solar wind pressure pulses, the KH instability on the magne-
topause, drift-bounce resonant particle interactions, and the
mirror-mode instability. First, with the exception of the in-
terval from 19:35 to 19:55 UT, the Wind observations shown
in Fig. 1 provide no evidence for periodic solar wind drivers
in the Pc5 range, be they density variations or IMF fluctua-

tions, thus ruling out solar wind pressure pulses as the direct
cause of the Pc4-5 pulsations. We then considered the pos-
sibility of KH waves. These waves are expected when the
solar wind velocity is high and both the magnetosheath and
magnetospheric magnetic fields lie transverse to the magne-
tosheath flow, i.e., on the flanks of the magnetosphere when
the IMF points southward or in particular northward (e.g.,
Guo et al., 2010). As shown in Fig. 1, the solar wind veloc-
ity during the interval when the Pc5 events occurred was only
moderate, 400–460 km/s. Furthermore, the IMF did not point
either strongly northward or southward. Therefore, we con-
clude that the compressional Pc5 pulsations were excited by
processes internal to the magnetosphere.
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Figure 11. RBSP-A and RBSP-B observations of pitch angle distributions for electrons in the energy range from 54 to 1060 keV, from 18:30
to 21:00 UT and from 20:40 to 23:10 UT on 1 January 2016, respectively.

Figure 12. (a, b) RBSP-A and RBSP-B observations of double-frequency pulsations (a) from 20:00 to 20:56 UT and from 20:48 to 21:55 UT,
respectively, and (b) their locations in the X–Y GSM and X–Z SM planes. Red and blue dashed lines mark the intervals with harmonic
structure of double-frequency pulsations.

Southwood (1981) and Kivelson and Southwood (1985)
described how the resonant drift-bounce interaction of parti-
cles with an azimuthally propagating wave generates large-
amplitude ULF waves in an inhomogeneous background
field. For this to happen, the wave frequency ω must satisfy

the resonance condition:

ω−mωd−Nωb = 0, (1)

where ωd and ωb are the angular drift and bounce frequen-
cies, respectively; N is an integer; and m is the azimuthal
wave number. Southwood (1973) predicted that particle flux
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Figure 13. Panels for RBSP-A (a, b) and RBSP-B (c, d) present electron fluxes for energies at 31.9 and 54.8 keV from EMFISIS, electron
densities from HOPE and the Bz component of the magnetic field in field-aligned coordinates from MagEIS from 19:00 to 21:00 UT and
from 20:46 to 22:10 UT, respectively. Dotted lines mark the intervals of observations of double-frequency pulsations. Panels (b, d) present
expanded views of 20 min intervals with the double-frequency pulsations to better visualize their features.

oscillations just above and below the resonant energy should
be 180◦ out of phase. As Fig. 10a and b demonstrate, RBSP-
A did not observe any such phase reversal in the electrons as
a function of energy. We exclude the drift-bounce resonance
as the cause of these compressional Pc5 pulsations.

Finally, we examined the mirror instability criterion. The
mirror instability is a kinetic phenomenon that occurs spon-
taneously in anisotropic high-β plasmas when the ratio of
perpendicular to parallel pressures is large (Southwood and
Kivelson, 1993). The test for the mirror instability is approx-
imately given as follows:

0 = 1+β⊥(1− T⊥/T//) < 0, (2)

where T// and T⊥ are the plasma temperatures parallel and
perpendicular, respectively, to the ambient magnetic field,
and β⊥ is the ratio of the perpendicular component of the
thermal plasma pressure to the magnetic pressure. For our
calculations, we obtained the magnetic field data from EM-
FISIS and thermal plasma pressures perpendicular and paral-
lel to the magnetic field from RBSPICE. We used the density
and temperature from HOPE to calculate the parallel and per-
pendicular thermal pressures within the energy range covered
by this instrument, but we found these pressures to be small
compared to those from RBSPICE. Consequently, our calcu-

lations neglect the contributions from HOPE to the thermal
pressures.

Figure 14a and b show RBSP-A and RBSP-B plasma and
magnetic field parameters characterizing the pulsations. The
upper panels indicate that magnetic field and plasma pres-
sures vary in antiphase during the Pc5 pulsations. However,
the total pressure is not balanced as might be expected for
mirror-mode waves. We suppose that this is because the RB-
SPICE (or even the RBSPICE+HOPE) plasma instruments
do not observe the entire plasma distribution. Assuming that
the total plasma pressure is proportional to the fraction that
RBSPICE does observe, we scaled the thermal plasma pres-
sures observed by RBSPICE upward to values that cause
the sum of the magnetic and perpendicular thermal plasma
pressure variations associated with the waves to be approxi-
mately constant during the intervals from 19:03 to 19:14 UT
for RBSP-A and from 22:32 to 22:56 UT for RBSP-B. The
upward scaling factors were 1.97 and 1.69, respectively. We
then applied these factors to both the perpendicular and par-
allel pressures. The third subpanels of Fig. 14a and b show
the values of β⊥ calculated from these scaled pressures.
Shaded grey areas in the fourth subpanels show when the
drift-mirror instability is satisfied (< 0). As the test for the
mirror instability is satisfied throughout most of the intervals
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Figure 14. (a, b) RBSP-A and RBSP-B plasma and magnetic field parameters characterizing the pulsations. Subpanels in each panel show the
magnetic pressure, perpendicular plasma pressure, the ratio of the plasma temperatures perpendicular and parallel to the magnetic field, beta,
and the results for the mirror instability criterion on 1 January 2016. Shaded grey areas indicate the times when the drift-mirror instability is
satisfied (< 1).

of enhanced temperature (pressure) anisotropy and β > 1 at
RBSP-A and RBSP-B, we attribute the compressional Pc5
pulsations observed on 1 January 2016 to the mirror instabil-
ity.

5 Conclusions

We used Van Allen Probes and GOES multipoint magnetic
field, electric field, plasma, and energetic particle observa-
tions to study the nature of compressional Pc5 pulsations at
the end of a strong magnetic storm on 1 January 2016. From
∼ 19:00 to 23:02 UT the magnetosphere was compressed and
transient increases of the total magnetic field strength oc-
curred every 20–40 min. During this interval the spacecraft
observed compressional Pc5 pulsations over a large longi-
tudinal extent. The solar wind pressure enhancements ini-
tiated and/or amplified compressional wave activity in the
dayside magnetosphere. The pulsations occupied the day-
side magnetosphere from 5.26 to 6.6 Re and from 09:56 to
15:20 MLT. Successive solar wind pressure increases and
magnetospheric compressions enhanced the amplitude of
Pc5 wave activity to values from 10 to 16 nT. The strongest
amplitudes occurred prior to local noon. They were observed
when the IMF cone angle was less than 45◦. We studied the
wave mode of the Pc5 pulsations and found that they had an
antisymmetric structure.

The greatest spectral power densities observed at RBSP-
A and RBSP-B occurred in the north or south (Bz) compo-
nent of the magnetic field at frequencies of ∼ 4.5–6.0 mHz.
The two spacecraft observed similar frequencies, indicating
that conditions within the dayside magnetosphere remained
steady for a long time and over a broad region. Enhanced
spectral power densities at frequencies of ∼ 22–29 mHz in
the radial Bx component can be attributed to the simulta-
neous generation of poloidal Pc4 pulsations by a different
mechanism. The frequencies of the Pc4 pulsations dimin-
ished with increasing radial distance. The dominant frequen-
cies for the compressional Pc5 pulsations observed by GOES
resembled those observed by RBSP-A and RBSP-B, and we
suppose that they were generated by the same sources. Pc4
pulsations observed by the GOES spacecraft displayed fre-
quencies that were lower than those observed by RBSP-A
and RBSP-B, since the GOES spacecraft were located fur-
ther radially outward from Earth. Since the frequencies of
the Pc4 pulsations depended on local time and radial distance
from Earth, their sources must be more localized than those
for the Pc5 pulsations.

When the spacecraft were in the vicinity of the geomag-
netic equator, RBSP-A observed meridional sloshing of the
equatorial wave node from ZSM = 0.25 to 0.04 Re, while
RBSP-B observed them from ZSM = 0.19 to−0.08 Re. Con-
sequently, we believe that the motion of the meridional os-
cillation of the position of the equatorial node was at least
0.15 to 0.18 Re. We found that RBSP-A observed ratios near
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1 at ZSM =∼ 0.08 Re, while RBSP-B observed ratios near
1 at ZSM =∼ 0.10 Re. These were the locations where the
southward-moving spacecraft RBSP-A and RBSP-B passed
through the mean positions of the equatorial node atZSM =∼

0.08 Re and at ZSM =∼ 0.10 Re, respectively. We report the
first evidence for meridional sloshing of the equatorial node
in the double-frequency variations of electron fluxes and
electron density observed by MagEIS and HOPE, respec-
tively.

The energetic particles observed by RBSP-A and RBSP-
B showed a regular periodicity over a broad range of ener-
gies from tens of electron volts to 2 MeV with periods cor-
responding to those of the compressional component of the
ULF magnetic field. The electron intensities exhibited quasi-
periodic enhancements at all energies with the most intense
at pitch angles near 90◦. The energetic electron fluxes os-
cillated out of phase with the magnetic field and did not dis-
play any phase shift across all energies. The depth of modula-
tion was larger for higher-energy electrons. We searched for
possible solar wind triggers and discussed generation mecha-
nisms for the compressional Pc5 pulsations in terms of drift-
mirror instability and drift-bounce resonance. We interpret
the compressional Pc5 waves in terms of drift-mirror insta-
bility.
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